skip to main content


Search for: All records

Creators/Authors contains: "Shi, Yue"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2025
  2. Abstract

    In type-II Weyl semimetals (WSMs), the tilting of the Weyl cones leads to the coexistence of electron and hole pockets that touch at the Weyl nodes. These electrons and holes experience the Berry curvature generated by the Weyl nodes, leading to an anomalous Hall effect that is highly sensitive to the Fermi level position. Here we have identified field-induced ferromagnetic MnBi2-xSbxTe4as an ideal type-II WSM with a single pair of Weyl nodes. By employing a combination of quantum oscillations and high-field Hall measurements, we have resolved the evolution of Fermi-surface sections as the Fermi level is tuned across the charge neutrality point, precisely matching the band structure of an ideal type-II WSM. Furthermore, the anomalous Hall conductivity exhibits a heartbeat-like behavior as the Fermi level is tuned across the Weyl nodes, a feature of type-II WSMs that was long predicted by theory. Our work uncovers a large free carrier contribution to the anomalous Hall effect resulting from the unique interplay between the Fermi surface and diverging Berry curvature in magnetic type-II WSMs.

     
    more » « less
  3. Abstract Fe 1+ y Te 1− x Se x is characterized by its complex magnetic phase diagram and highly orbital-dependent band renormalization. Despite this, the behavior of nematicity and nematic fluctuations, especially for high tellurium concentrations, remains largely unknown. Here we present a study of both B 1 g and B 2 g nematic fluctuations in Fe 1+ y Te 1− x Se x (0 ≤ x ≤ 0.53) using the technique of elastoresistivity measurement. We discovered that the nematic fluctuations in two symmetry channels are closely linked to the corresponding spin fluctuations, confirming the intertwined nature of these two degrees of freedom. We also revealed an unusual temperature dependence of the nematic susceptibility, which we attributed to a loss of coherence of the d x y orbital. Our results highlight the importance of orbital differentiation on the nematic properties of iron-based materials. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  4. Free, publicly-accessible full text available August 1, 2024
  5. Abstract

    The anomalous Hall effect (AHE), typically observed in ferromagnetic (FM) metals with broken time-reversal symmetry, depends on electronic and magnetic properties. In Co3Sn2-xInxS2, a giant AHE has been attributed to Berry curvature associated with the FM Weyl semimetal phase, yet recent studies report complicated magnetism. We use neutron scattering to determine the spin dynamics and structures as a function ofxand provide a microscopic understanding of the AHE and magnetism interplay. Spin gap and stiffness indicate a contribution from Weyl fermions consistent with the AHE. The magnetic structure evolves fromc-axis ferromagnetism at$$x = 0$$x=0to a canted antiferromagnetic (AFM) structure with reducedc-axis moment and in-plane AFM order at$$x = 0.12$$x=0.12and further reducedc-axis FM moment at$$x = 0.3$$x=0.3. Since noncollinear spins can induce non-zero Berry curvature in real space acting as a fictitious magnetic field, our results revealed another AHE contribution, establishing the impact of magnetism on transport.

     
    more » « less
  6. null (Ed.)
  7. null (Ed.)
  8. null (Ed.)
    Membrane filtration fouling is a very complex process and is determined by many properties such as the membrane internal morphology, membrane pore structure, flow rate and contaminant properties. In a very slow filtration process or during the late stage of filtration, when the flow rate is naturally low and Péclet number is small, particle diffusion is essential and cannot be neglected, while in typical filtration models, especially in moderate and fast filtration process, the main contribution stems from the particle advection. The objectives of this study is to formulate mathematical models that can (i) investigate how filtration process varies under possible effects of particles diffusion; and (ii) describe how membrane morphology evolves and investigate the filtration performance during the filtration process. We also compare the results with the case that diffusion is less important and make a prediction about what kind of membrane filter pore structure should be employed to achieve a particular optimum filtration performance. According to our results, the filtrate and efficiency of particle separation are found to be under the trade-off relationship, and the selection of the membrane properties depends on the requirement of the filtration. 
    more » « less